Problem Set 8

Problem 1 (40)

The Ornstein-Zernike equation is the integral equation for the correlation function \(h(r) = g(r) - 1 \) which expresses it in terms of the so-called "direct correlation" \(c(r) \) via

\[
h(r_{12}) = c(r_{12}) + \rho \int d^3\vec{r}_3 c(r_{13}) h(r_{32})
\] (1)

It may be regarded as the definition of \(c(r) \) in terms of the radial distribution function \(g(r) \). However, if one were to take \(c(r) = f(r) = e^{-\beta\phi(r)} - 1 \) which is the leading term in the low density expansion of \(g(r) - 1 \), O-Z equation would produce some approximation of \(h(r) \). Generate a low density expansion (solving this equation by iteration) and show which diagrams are included. Compare with the result of problem #2 (PS#7).

Problem 2 (60) Consider potential

\[
\phi(r) = \begin{cases}
\infty & \text{for } r < a \\
e^\frac{\epsilon r}{c-a} & a < r < b \\
0 & r > b
\end{cases}
\] (2-4)

where \(\epsilon > 0 \) and \(c > a \).

a) Sketch and comment briefly on the reasonableness of the potential as a model of liquid for \(c = b/2 \), \(c = b \) and \(c = 2b \).

b) Sketch \(g(r) \) in the limit of low density for a couple of temperatures when \(c = 2b \)

c) In the same limit of low density calculate the scattering intensity \(I(k) \) when \(c = \infty \).

d) Determine corresponding compressibility \(\kappa_T \) from your results.

e) Sketch your answer as a function of \(k \) for the case \(\epsilon = 0 \) and find the 1st non-zero correction term in the expansion of \(I(k) \) in powers of \(ka \) about \(k = 0 \).

f) By considering a general potential \(\phi(r) \) and expanding \(I(k) \) in the powers of \(k \), determine what information about the potential is obtained by determining this leading correction term at low densities.