HW#3  Solutions.
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1.64. Field between two wires

The electric field from a single wire is \/2reyr. Between the wires the fields from the
two wires point in the same direction, 50 we have

15,000 N/C = 22“"’r A = (15,000 N/C)meor
22
(15,000 N/C)(3.14) | 8.85-107"2 :g—i) (1.5m)
= 63-1077C/m. (57)

The amount of excess charge on 1 km of the positive wire is then (1000m)X = 6.3 -
07'C.

1.65. Building a sheet from rods
In Fig. 19, the horizontal line represents the sheet, which extends into and out of the
page (and also to the left and right). The short segment represents a rod extending
into and out of the page, with small width dz. The field at point P due to the rod is
A/2meor, where the effective linear charge density of the rod is A = o dz. This is true
because the amount of charge in a length £ of the rod can be written as both A (by
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definition) and o€dz (because £dz is the relevant area). The horizontal component
of the field cancels with the horizontal component of the field arising from the rod
located symmetrically on the left side of P. So (as expected) we care only about the
vertical component. This brings in a factor of cos6. And since @ = ytand, we have
dz = ydf/ cos?. The (vertical) field at P therefore equals

> gdz “/2 gy df cos? B)
£ [ 2mer 0= /4/1 realy] cost)
sz
- o
Y =

as desired. Alternatively, you can write the integral in terms of z. Since cos§ = y/r
we have

< gds oy [* _dx

| ey v e ) T

(39)
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231. Finding the potential

The line integral along the first path is (we'll suppress the z component of the argu-
ment)

) - "
/ E-ds = / E.(z,0)dz + Ey(z1,y)dy
{ o o

o
"
= o+ [" e s dy =35t 2 (99)
o
The line integral along the second path is
- " o
[ s = [T Bowas [ B
(0,0) 0 o

= [lo-was [ e st vzt o)

These two results are equal, as desired. The electric potential ¢, if taken to be zero
at (0,0), is just the negative of our result, because we define ¢ by ¢ = — [ E -ds, or
equivalently E = —V¢. Hence ¢(z,y) = ° — 322y. The negative gradient of this is

o= (52,92, %) — (6zy. 52 -0, (1)

which does indeed equal the given E.

An alternative method of finding ¢ is to integrate the components of E to find the
general form that ¢ must take. Since —6/0z equals E; = bzy, we see that —0
must take the form of 3z%y + f(y, z), where f(y,z) is an arbitrary function of y and
2. Likewise, since ~06/y equals E, = 3z — 3y, we sce that —¢ must take the
form of 3z%y — 4 + g(z, 2). Finally, since —96/9z equals E, = 0, we see that —¢
must take the form of 0 + h(z,y), that is, & is a function of only z and y. The only
function consistent with all three of these forms is —¢ = 3z% — y° (plus a constant),
in agreement with the above result.
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2.37. Field on the earth
The radius of the earth is r = 6.4 - 10°m, so we have

o LQ_ (g pkenty 1C -V
E o= dmeyr? (9 B 51(7)(64 10°m)? 22-107% o
_ rte_ o kgm® c_ _
6 = ‘mrf(p 10° ’ci)(u o) = MO0 V- (1)

This value of 1400 V is larger than you might think it should be, given the large radius
of the earth. The point is that a coulomb is a large quantity of charge, on an everyday
scale. Or equivalently ¢y has a small value in the system of units we use.
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2.43. Potential from a rod
At point Py in Fig. 36 we have

_ 1t adz A
T ime J_y 2z ey

g AL d_ A
In(2d -~ ’)’,d T34~ dme MY (129

kA
At point P, with a general z value, we have (using the integral table in Appendix K)

" " T
PR Adz Py h\/m“” A l“(‘/z T +d

“he ) Va2 e e \VE+d—d
(i25)
These two potentials are equal when
Vel
2 idihd 1d=2/ 1 B z=V3d. (126)
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