Homework Solutions #5
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2.75. Curls and divergences
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IfF = (z+y,—z+y,—22) we quickly find V x F = (0,0,-2) and V - F =

1+1—-2=0. Since the curl isn’t zero, there is no associated potential ¢.

1f G = (2y, 22 +32,3y) then we find V x G = (0,0,0) and V-G = 0+0+0 = 0.
Since V x G = 0 there exists a g such that G = Vg. To determine g, we can
compute the line integral of G from a fixed point, say (0,0,0), to a general point
(20,0, 20) over any path. Using the path composed of the three segments in the
=, then y, then z directions, we have
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9(20, Y0, 70)

Since (zo, Yo, 2) is a general point, we can drop the subscripts and write g(z, 1, 2) =
22y + 3yz. You can quickly check that the gradient of g is indeed G.

A quicker method of obtaining g is the following. The z component of Vg = G
tells us that 9g/dz = 2y. So g must be a function of the form 2zy + fi (v, ).
Similarly, the y component tells us that g must take the form 2zy+3yz+ fo(z,2),
and the z component tells us that g must take the form 3yz + fs(z,y). You can
quickly verify that the only function satisfying all three of these forms is 2zy+3y>
(plus a constant).

T H = (22—22,2,222) then we find V x H = (0, —42,0) and V-H = 22+0+2z =
4z. Since the curl isn’t zero, there is no associated potential ¢.
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3.31. In or out

The charge distributions are shown in Fig. 64. In both cases, there is negative charge
on the inside surface of the inner “ring” (due to the attraction to the charge ¢) and
positive charge on the outside surface of the outer ring (due to the self repulsion of
the leftover positive charge). (b)

In the first case, the charge g is outside the conducting shell, so there must be zero
field inside. Consistent with this, there is no charge on the inner side of the surface
that touches the hollow interior of the conductor. (If there were such a charge, we
could draw a Gaussian surface that lies partially inside the metal of the conductor,
and partially in the interior of the conducting shell, to show that there would be a =
nonzero field in the interior.)

In the second case, the charge g is inside the conducting shell, so there is a nonzero -
field in the interior. Consistent with this, there is nonzero charge (the negative charge
shown) on the inner side of the surface that touches the hollow interior of the conduc-
tor. The positive charge is still outside, as it was in the first case.

The first case is consistent with the fact that there is no electric field in the hollow

interior of a conducting shell containing no charge, while the second case doesn’t apply
because there is charge inside.
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3.33. Two concentric shells

(a) The charge distributions and field lines are shown (roughly) in Fig. 65. Let the
four surfaces be labeled 1, 2, 3, 4, starting from the innermost one. There is
charge —g on surface 1. This is true because the field is zero inside the metal of
the conductor, so a spherical Gaussian surface drawn inside the metal of the inner
conductor has no flux, so the net charge enclosed in the sphere must be zero. The
negative surface charge density on surface 1 is higher near the off-center point
charge. Since the inner conductor is neutral, a charge +¢ must reside on surface
2. This surface charge density is spherically symmetric, because it feels no field
from the charges inside (or outside) of it, due to the zero field inside the metal
of the conductors.

Figure 65

By the same Gauss's-law reasoning, there must be a charge —g on surface 3,
because there is zero field inside the metal of the outer conductor. This surface
charge density is spherically symmetric. A charge +¢ is left for surface 4. This
surface charge density is actually negative near the outer charge g if that charge
is located close enough to the shells; see Exercise 3.49. But in any case the total
charge on surface 4 is +¢. Between the shells, the field is spherically symmetric,
consistent with the spherically symmetric charge densities on surfaces 2 and 3.

(b) The shells are now at the same potential, so the field between them must be zero.
Therefore, the only difference from the scenario in part (a) is that we just need to
erase the field between the shells and erase the charges on surfaces 2 and 3. The
charges on surfaces 1 and 4 aren’t affected by this change, because the surfaces 2
and 3 together produced zero field everywhere except between them. Basically,
when we connect the shells, the charges on surfaces 2 and 3 simply neutralize
each other.
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2.70. Triangular E

The slopes in the triangular part of the plot of E are £Eo/a, so we quickly find that
in the left and right regions near the origin, E(z) takes the form of

i) = (Bo/a)s+ By, and  Ey(z) = —(Bo/a)x + Fy. (205)

Gauss’s law in differential form is p = €V - E, which in one dimension becomes simply
p = € 0E,/dz. So the charge densities in the left and right regions are

pL=¢6kEpfa and  pr=—€E/a. (206)

And p = 0 outside the —a < z < a region. So we have two slabs with opposite charge
densities, with the positive slab on the left.
Since E = —V¢ (which in one dimension becomes E = —%86/0z), we simply need to
integrate E(z) to obtain ¢(z). We find

du(r) = —Eor®/2a— Eoz  and  En(z) = Eor®/2a— Boz.  (207)

There is technically a constant of integration in each of these expressions, but the
constants are zero if we take ¢ = 0 at z = 0. Since E = 0 outside the —a < z < a
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Figure 55

region, ¢ is constant, taking on the values it has at the boundaries, namely +Eoa/2.
The plots of p, E, and ¢ are shown in Fig. 55.

A double check: At = = 0, the two slabs act effectively like sheets with charge densities
+0 = pa. They each create a field pointing to the right with magnitude o/2e, so the
total field at z = 0 is 2(pa) /26, = pa/eo. And since we found above that p = €oEo/a,
this field equals Eo, in agreement with the given value.
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2.73. Satisfying Laplace
In f(z,y) =22 + ¢, then
*f P
£ it AT
V=gt g =220 (213)
1 g(z,y) = 22 — 42, then V2f = 2 —2 = 0. So g satisfies Laplace’s equation, but f
does not. The plot of g(z,y) looks like the saddle shown in Fig. 58. It is a positive
parabola along the = axis, and a negative parabola along the y axis.
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Figure 59

CHAPTER 2. THE ELECTRIC POTENTIAL

The gradient of g is Vg = (8g/dz, dg/dy) = (2r,~2y). So the gradients at the
points (0, 1), (1,0), (0, ~1), (~1,0), are, respectively, the vectors (0, ~2), (2,0), (0,2),
(~2,0). These are indicated in Fig. 59. Not that the gradient points in the direction
of stecpest ascent, as it should.

Since the divergence of (2, ~2y) equals zero (or equivalently since the Laplacian of
¢ equals zero), there is zero net flux of the vector field (2z,~2y) out of any closed
volume. You should convince yourself that this is believable by looking at the full
vector field in Fig. 60.
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Figure 60








