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3.34. Equipotentials

Assume that the point charge is positive (the general result is the same if it is negative).
Then the near part of the sphere ends up negatively charged, and the far part ends
up positively charged. (The sizes of these two regions depend on the distance from
the point charge to the sphere.) By continuity, there must therefore be a circle on the
sphere where the charge density is zero. But the electric field near the sphere (which
is perpendicular to the conducting surface) is given by o/¢p. So if ¢ = 0 on the circle,
then F = 0 also.

The general shapes of the equipotentials are shown in Fig. 66. (The various curves
have been chosen to indicate the general features; their potential values aren’t equally
spaced.) In this specific case, the distance from the point charge to the sphere has
been chosen to be twice the radius of the sphere. The transition from small circles
around the point charge to large circles around the whole system takes place via the
equipotential curve that heads straight into the sphere and then splits in two, encircling
the sphere. At the point where the curve splits, it changes direction abruptly. Since
the electric field must be perpendicular to the equipotential surface at every point,
this means that the electric field must point in two different directions at the splitting
point. The only vector that is perpendicular to two different directions is the zero
vector. So this is a second way of seeing why there must be points on the surface of
the sphere where the electric field is zero.
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3.38. Two charges and a plane

First note that such a location must exist, due to a continuity argument: If the —Q
charge is placed only slightly below the fixed @ charge, the upward attractive force
from the @ charge will dominate. But if the —Q charge is placed only slightly above
° 0 the conducting plane, the downward attractive force from the +@Q image charge will
dominate. So somewhere in between, the force on the —Q charge must be zero.

Let y be the distance from the —(@ charge to the plane. The field above the plane due
/ °-0 to the two given charges along with the induced charge on the plane is identical to the
field due to the two given charges along with the two image charges below the plane
shown in Fig. 71. The given —Q charge feels the fields due to the other three charges.
Taking upward to be positive, the force on the given —(Q charge is
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Setting this equal to zero yields
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This is a quadratic equation in y2. We are concerned with the positive root (since y?
is positive), which is

2= % ~(0.0938)2 => y=(0.306)(. (233)
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3.54. Dividing the surface charge

If oy is the surface density on the top face of the inner plate, and if oy is the density
on the bottom face, then the magnitudes of the electric fields in the top and bottom
regions are Ey = 01/€g and Ey = 09/¢g. These follow from using Gauss’s law with
surfaces that pass through the interior of the middle plate where the field is zero.
The difference in potential between the middle and top plates is F1(0.05m), and the
difference in potential between the middle and bottom plates is E5(0.08 m). Since
the top and bottom plates are at the same potential, we must have 5E; = 8Ey —
501 = 809. Combining this with the given fact that o; + 09 = o, we quickly find
o1 = (8/13)0 and o9 = (5/13)0.

REMARK: From similar reasoning involving Gaussian surfaces with one side lying inside a
conductor, it follows that the density on the bottom face of the top plate is —oy, and the
density on the top face of the bottom plate is —o2. Assuming that there is zero net charge on
the outer two plates, this leaves at total of o1 4+ 02 = o for the outer surfaces of these plates.
It must get divided evenly, because otherwise these two surfaces would create a nonzero field
between them, which would change the above fields and make the outer plates not be at the
same potential. If any additional charge is dumped on the outer plates, it simply gets divided
evenly between their two outer surfaces.




image4.png
Zwire ymmme E=0 }Ql

wire “=--' E=0 }Qz

Figure 79

3.55. Two pairs of plates

Since the top two plates are at the same potential, the field is zero between them.
Likewise, the field is zero between the bottom two plates. This exercise is therefore
basically the same as Problem 3.20, due to the fact that the field inside a conductor is
zero, just as the field between the two pairs of plates is zero in the present exercise. The
four sheets here are equivalent to the four surfaces of the two plates in Problem 3.20.
The solution is therefore basically the same.

Consider the Gaussian surface indicated by the dotted box in Fig. 79. Since there is
no flux out of the top or bottom, the net charge enclosed must be zero. Hence there
are equal and opposite charges on the inner two plates.

‘We now claim that the charges on the outer two plates must be equal. This is true
because the two inner plates create zero net field in the E' = 0 regions (because these
two plates are on the same side of each of the E = 0 regions and have opposite charges,
so their fields cancel). The outer two sheets must therefore also create zero net field
in the E = 0 regions. Since these sheets are on opposite sides of a given E' = 0 region,
their charges must be the same if the fields are to cancel.

‘We can therefore describe the charges on the four plates, from top to bottom, as g1,
g2, —q2, and ¢1. The given information tells us that ¢1 + g2 = Q1 and 1 — g2 = Qa.
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3.59. Coaxial capacitor

Neglecting end effects, we can assume that the charge +Q is uniformly distributed
along each cylinder. The field between the cylinders is that of a line charge with
density A = Q/L, so E = \/2meqr = Q/2megLr. The magnitude of the potential
difference between the cylinders is then

|Ag| /bnEdr ¢ _Qar Q 1(3)A (265)
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Since C' = Q/|A¢|, the capacitance is given by C' = 2wegL/In(a/b). If a —b < b, then
we can use the Taylor series In(1 + €) ~ € to write

m(%):m(u";b)za;b. (266)

So the capacitance becomes C =~ 2megbL/(a — b). But 2rbL is the area A of the inner
cylinder, and a — b is the separation s between the cylinders. So the capacitance can
be written as C' = egA/s, which agrees with the standard result for the parallel-plate
capacitor.









