Homework Solutions #7
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If the inner and outer shells are at the same potential, then Q1(1/R — 1/2R)
must also be the potential difference between the outer and middle shells, with
the outer shell at the higher potential. The field between the middle and outer
shells must therefore point inward. This field is due to the inner two shells, so
it points inward with magnitude (Q — Qy)/r?, given that —@Q is the charge on
the middle shell. Note that () must be larger than @;. The potential difference
between the outer two shells is then (Q — Q1)(1/2R—1/3R), with the outer shell
at the higher potential.

Equating the inner-middle and outer-middle potential differences gives
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And then Q3 = 3Q/4, to make the total charge on the inner and outer shells be

equal to Q.

The potential difference between the inner and middle shells, which is the same

as the difference between the outer and middle shells, is (bringing the 1/47meq

back in, and using Q1 = Q/4)
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4meg \ R 2R 3271egR (268)

Therefore ) = (32megR)¢, so the capacitance is 32meg R.

Note that Q3 didn’t appear anywhere in the calculation in part (a). It can
therefore take on any value, and the inner-middle and outer-middle potential
differences will still be equal, provided that Q1 = Q/4. So if we add charge ¢
to the outer shell, it will simply stay there, uniformly distributed on the outside
surface of the shell. It will raise the potential everywhere inside by q/4meg(3R),
but since this change is uniform inside, all differences remain the same. If any
charge flowed across the wire from the outer shell to the inner shell, the final
charge ) on the inner shell would violate the Q1 = Q/4 result we found above
(because the middle shell is now isolated, so its charge of —Q doesn’t change).
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3.67. Energy in coaxial tubes

‘We'll solve this exercise first by using the energy density in the electric field, and then
by using the capacitance. If A is the charge per unit length on the inner cylinder (with
—A on the outer cylinder), then the field between the cylinders (ignoring end effects) is
A/2meqr. The energy stored in the field is therefore (with £ = 0.3 m being the length)
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To write this in terms of the (magnitude of the) potential difference ¢ between the

tubes, instead of in terms of A, note that
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Solving for A and plugging the result into Eq. (292) gives
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ALTERNATIVELY: We can solve the problem using capacitance. Using the value of ¢
we found above, the capacitance of the tubes is given by

Q pya 2meol
¢ (M2me)In(ra/r1)  In(ra/r1)’
which is independent of A, as it should be. (The capacitance depends only on the

geometry of the system, and not on the charge that is placed on the conductors.) The
energy stored is then
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in agreement with the first solution.
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3.52. Aluminum capacitor

The capacitance is

2 2
10-12 8 C 2
ot (8.85 1072 mg) (1r(0.075 m) )
5 4-10~5m

c 3.910- 107 F = 3910 pF. (260)
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3.53. Inserting a plate

Put charges @ and —Q on the two conductors in each of the two given capacitors. In
the bottom capacitor in Fig. 78 one of the conductors consists of the two outer plates,
because they are connected by a wire. The charge distributions on the various surfaces
are shown. All the factors of 1/2 arise from symmetry. In the bottom capacitor, the
potential difference (which is the difference between either of the outside plates and
the inner plate) equals the field times the separation. The field is half of what it is in
the top capacitor (because the density o is half), and the separation is also half. So
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the potential difference is (1/2)(1/2) = 1/4 of what it is in the top capacitor. Since
the charge @ on each capacitor is the same, we have

Q= Ct0p¢7 and Q= Cbottom(¢/4)< (261)

These quickly give Chottom = 4Ciop. So our answer is 4C.

In the more general case where the middle plate is a fraction f of the distance from one
of the outside plates to the other, you can show that the capacitance is C/[f(1 — f)].
This correctly equals 4C' when f = 1/2. It minimum when f = 1/2 and goes to
infinity as f goes to 0 or 1.
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3.56. Field just outside a capacitor

If the disks were infinitely large, the desired field would be zero. But with a finite R,
the repulsive field from the positive disk (which acts like an infinite plane, for points
infinitesimally close to it) is slightly larger than the attractive field from the negative
disk, which does’t quite act like an infinite plane.

Let’s find the field due to a disk with radius R and surface density o, at a general point
a distance z from the center of the disk along the axis. This can be found by slicing
up the disk into rings and finding the z component of the field due to the charge in
each ring. We obtain (the z/v/72 + 22 factor here gives the z component):
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As expected, if 2 < R we obtain the standard o/2¢ field from an infinite plane.
In the case of the negative disk in this problem, z equals the separation s. So the
difference in the magnitudes of the (oppositely pointing) fields from the two disks, at
a point just outside the positive disk, is 0s/2e0v/R? + s2. The net field therefore has
this magnitude and is directed away from the positive disk. In the (usual) case at
hand where s < R, the net field is essentially equal to os/2eyR, which is s/R times
the 0/2¢ field from an infinite plane.
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3.60. A three-shell capacitor

(a) Let Q1 and Q3 be the final charges on the inner and outer shells, respectively.
The outward-pointing field between the inner and middle shells is due only to
the inner shell, and it equals (ignoring the 1/47eg since it will cancel) Qq/r2. So
the potential difference between the inner and middle shells is Q;(1/R — 1/2R),
with the inner shell at the higher potential.








