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2.69. E and ¢ for a slab

(a) At position z inside the slab, there is a slab with thickness £ — = to the right of
x, which acts effectively like a sheet with surface charge density og = (£ — z)p.
Likewise, to the left of z we effectively have a sheet with surface charge density
oL = (£+ z)p. Since the electric field from a sheet is /2¢, the net field at
position z inside the slab is

potop _(E—2)p _pz

200
2e0 2e0 €’ (200)

and it is directed away from the center plane (if p is positive). You can also
quickly obtain this by using a Gaussian surface that extends a distance z on
either side of the center plane.

Outside the slab, the slab acts effectively like a sheet with surface charge density
p(26), so the field has magnitude (2p€)/26, = pé/eq and is directed away from
the slab. E(z) is continuous at x = ¢, as it should be since there are no surface
charge densities in the setup.
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(b) The potential relative to z = 0 is ¢ = — [’ E dz. Inside the slab this gives
= 2
pc_ pz
w(z)=— [ PE=_PE 201
bn@) == | =5 (201)

Outside the slab, we must continue the integral past ¢ = 4. On the right side
of the slab, where © > £, the potential is

o(z) = —/:Ezdz—/lrExdxz [ fﬂlda:

- 7£J’l(x4)=£7E (202)
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On the left side of the slab, where z < —£, you can show that the only change in
$ is that there is a relative “+” sign between the terms (basically, just change £
to —£). So the potential outside the slab equals

pﬁ _ pllal (203)

€

Bout(®) =

From Egs. (201) and (203) we see that é(a:) is continuous at the boundaries at
2 = 4, as it should be. Plots of E(z) and ¢(z) are shown in Fig. 54.
(c) For a single Cartesian direction, we have V - E = 0E, /0z and V¢ = 8¢/0z%.
The following four relations are indeed all true:
Inside: p(z) =V -E <= p=ed(pz/eo)/dx, (204)
Outside:  p(e) =&V -E <= 0= ed(pt/e)/dz,
Inside:  p(z) = —e0V29 <= p= —eod’(—pz?/260)/02",
Outside:  p(z) = —€gV?¢ <= 0= —eg0*(pl?/2€) + plz/eg)/Oz>.

‘We also have E V¢ both inside and outside, which is true by construction
due to the line integrals we calculated in part (b).
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2.42. E and ¢ for a cylinder
() Consider a coaxial cylinder with length £ and radius 7 < a. The charge contained
inside is m726p. The area of the cylindrical part of the surface is 2rrf, and since
E is perpendicular to the surface by symmetry, the flux is 2rr{E. So Gauss’s
law gives the internal electric field as

)

E=

(for r<a). (121)
€ 2e0

/E-.ia:l — 2mrlE=
P

We'll also need the external field for part (b). For this field, consider a cylinder
of radius 7 > a. This contains a fixed amount of charge ma2fp, so Gauss’s law

2 2
/E-da:i omrep = T2 E=
€ 2,

(for r>a). (122)

This s the same as the field from & line of charge (namely )/2reor) with lineer
density A = ma2p. Note that the internal and external fields agree at r —

(b) If ¢ =0 at r = 0, then we have

Forr<a: ¢(r) = 7/ Edr—— [ P9 _
oy 2
Forr>a: ¢(r) = /Edr—/ Edr

5 >
B " paldr  pd
= 45,, Deor e 2( ln(r/“)' (123)
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This goes to —co as T — cc. It also goes to —oo for any given value of  if a — 0
while the charge per unit length (ma2p) is held constant.
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2.48. Field from a hemisphere
As in Problem 2.7, our strategy will be to find the potential at radius r, and then
take the derivative to find the field. The calculation is the same as in Problem 2.7,
except that the limits of integration are modified. If we define § in the same way
is in Fig. 12.28, it now runs from /2 to m. Following the steps in the solution to
Problem2.7, the potential at point P in Fig. 41 is (we'll keep things in terms of the
density o)

/* 2rR2gsin6d§
/2 dmeo/R? + 12 — 2rRcos0

Figure 41 &(r)
= R R arRest

2eor

-
gR
- B - 7
ey (B+7) = VEE£72). (138)
‘We are concerned with small r, because we want to know the field at the center. For

small 7 we can write VRZ + 12 = Ry/1+r2/R? ~ R(1 +12/2R?). So the potential

near the center is

oR 200\ _oR
o= (r — /m) = ( - r/2R) (139)
The field at the center is then
b _ o
B === (140)

You can check that you arrive at the same result if you take P to be on the left side
of the center. You will need to be careful about the limits of integration and various

sigas.
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Figure 43
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2.53. Field from two shells

By superposition, the electric field outside both shells is that of two point charges
located at the centers. And also by superposition, the field inside each shell is that
of & point charge at the center of the other shell (because a given spherical shell with
uniform charge distribution produces no field in its interior). We therefore obtain the
fields shown in Fig. 43. Note that the field lines inside each shell are straight.

The two shells are equivalent (as far as their external fields go) to two point charges
Q and —Q at their centers. Therefore we may replace the spheres with these point
charges. Since the centers are initially 2 apart, the amount of work required to move
them to infinity is (1/4meo)(Q%/2a).

In more detail: Let the positive shell be labeled A, and the negative shell B. The
external field of A alone is that of a point charge Q at its center. So the work required
to move B to infinity in the given setup is the same as the work required in an
alternative setup where A is replaced by a point charge. But the work in this case is
the same as if we instead held B fixed and moved the point charge to infinity. But
since the external field of B alone is that of a point charge —@Q at its center, we may
replace B with a point charge. The work is therefore the same as in the case where
we have two charges Q and —Q that are initially 2a apart.
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2.62. Square quadrupole

By symmetry, the desired field is radial. Let the lines to the negative charges make
an angle § with respect to the line to the center of the square, and let the distance to
the negative charges be 71, as shown in Fig. 48. Then the total field at a distance r
from the center is (with k = 1/47e,, d = £/v/2, and € = d/r)
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(179)

There are various ways of obtaining the above Taylor series, but perhaps the easiest
is to note that, for example, 1/(1 — €)? equals the derivative of 1/(1 — ), which itself
is just the sum of the geometric series 1+ €+ €2+ -,

Our result for B is positive, so the field points away from the square. Along the other
diagonal, it points toward the square. This implies that if we traverse a large circle
around the quadrupole, there are four locations where the radial component of the
field is zero. This should be contrasted with the field of a dipole, which has only two
such locations where the radial component is zero.
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