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1.36. Repelling volley balls
Consider one of the balls. The vertical component of the tension in the string must
equal the gravitational force on the ball. And the horizontal component must equal
the electric force. The angle that the string makes with the horizontal is given by
tan6 = 10, so we have

;—::m = Ef:m = q,/;"#:m. @
Therefore,
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= 817-1072C? = ¢=29-107°C. (5)

1.37. Zero force at the corners

(a) Consider a charge g at a particular corner. If the square has side length £, then
one of the other g's is v/2£ away, two of them are £ away, and the —Q is £/v/2
away. The net force on the given g, which is directed along the diagonal touching
it, is (ignoring the factors of 1/4re, since they will cancel)
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Setting this equal to zero gives

(: + é) 4= (0957)q. @

Qg
(V2R

2
+ stwqﬁ - ()

Q




image2.png
I e sy

1.40. Zero potential energy
Let’s first consider the general case where the three charges don’t necessarily lie on
the same line. Without loss of generality, we can put the two electrons on the z axis a
unit distance apart (that is, at the values = £1/2), as shown in Fig. 1. And we may
‘assume the proton lies in the zy plane. For an arbitrary location of the proton in this
plane, let the distances from the electrons be ry and ra. Then setting the potential
energy of the system equal to zero gives
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One obvious location satisfying this requirement has the proton on the y axis with
=7, =2, that s, with y = vI5/2 ~ 1.94. In general, Eq. (17) defines a curve in
the zy plane, and a surface of revolution around the  axis in space. This surface is
the set of all points where the proton can be placed to give U = 0. The surface looks
something like a prolate ellipsoid, but it isn’t.
Let’s now consider the case where all three charges lie on the z axis. Assume that
the proton lies to the right of the right electron. We then have r, = z — 1/2 and
2= +1/2, 50 Eq. (17) becomes
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22— 1/4=0 (18)
‘The negative root must be thrown out because it violates our assumption that z > 1/2.
(With o < 1/2, the distance | isn’t represented by z — 1/2). So we find z = 2.118.
The distance from the right electron at z = 1/2 equals (1+ v/5)/2. The ratio of this

distance to the distance between the electrons (which is just 1) is therefore the golden
ratio. If we assume z < —1/2, then the mirror image at z = —2.118 works equally
well. You can quickly check that there is no solution for & between the electrons, that
is, in the region —1/2 < z < 1/2. There are therefore two solutions with all three
charges on the same line.
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1.42. Potential energy in a 1-D crystal

Suppose the array has been built inward from the left (that is, from negative infinity)
as far as a particular negative ion. To add the next positive ion on the right, the
amount of external work required is

1 (e
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The expansion of In(1 + z) is z — 2%/2 + 2°/3 — ---, converging for -1 < z < 1.
Evidently the sum in parentheses above is just In2, or 0.693. The energy of the
infinite chain per ion is therefore —(0.603)¢? /4meqa. Note that this is an exact result;
it does not essume that a is small. After all, it wouldn't make any sense to say that
“a is small,” because there is no other length scale in the setup that we can compare
a with.
The addition of further particles on the right doesn’t affect the energy involved in
assembling the previous ones, so this result is indeed the energy per on in the entire
infinite (in both directions) chain. The result is negative, which means that it requires
energy to move the fons away from each other. This makes sense, because the two
nearest neighbors are of the opposite sign.
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If the signs of all the ions were the same (instead of alternating), then the sum in
Eq. (21) would be (1+1/2+1/3+1/4+-+), which diverges. It would take an infinite
amount of energy to assemble such a chain.
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An alternative solution is to compute the potential energy of a given ion due to the full
infinite (in both directions) chain. This is essentially the same calculation as above,
except with a factor of 2 due to the ions on each side of the given one. If we then sum
over all ions (or a very large number N to find the total energy of the chain, we have
counted each pair twice. So in finding the potential energy per ion, we must divide by
2 (along with N). The factors of 2 and ' cancel, and we arrive at the above result.
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