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10. The spatial variation of this field was carefully analyzedt and
found to be entirely consistent with classical theory out to a distance q
of at least 10° kilometers (km) from the planet. This is tantamount to 2
a test, albeit indirect, of Coulomb’s law over that distance.
To summarize, we have every reason for confidence in Cou- Great
lomb’s law over the stupendous range of 24 decades in distance, from distance
10~ to 10'° cm, if not farther, and we take it as the foundation of Vs
our description of electromagnetism. 5

ENERGY OF A SYSTEM OF CHARGES
1.5 In principle, Coulomb’s law is all there is to electrostatics.
Given the charges and their locations we can find all the electrical
forces. Or given that the charges are free to move under the influence
of other kinds of forces as well, we can find the equilibrium arrange- ' oq
ment in which the charge distribution will remain stationary. In the , - 2
same sense, Newton’s laws of motion are all there is to mechanics. But
in both mechanics and electromagnetism we gain power and insight -
by introducing other concepts, most notably that of energy. "
Energy is a useful concept here because electrical forces are con- (b)
servative. When you push charges around in electric fields, no energy
is irrecoverably lost. Everything is perfectly reversible. Consider first
the work which must be done on the system to bring some charged
bodies into a particular arrangement. Let us start with two charged
bodies or particles very far apart from one another, as indicated at the
top of Fig. 1.4, carrying charges ¢, and g,. Whatever energy may have
been needed to create these two concentrations of charge originally we
shall leave entirely out of account. Bring the particles slowly together
until the distance between them is r;,. How much work does this take?
It makes no difference whether we bring g, toward g, or the
other way around. In either case the work done is the integral of the
product: force times displacement in direction of force. The force that
has to be applied to move one charge toward the other is equal to and
opposite the Coulomb force.

(a)

r12 —d
W = J- force X distance = J q1q2(2 ) = 4@ 3)

r=c0 r Fi2
Because 7 is changing from oo to rj,, the increment of displacement
is —dr. We know the work done on the system must be positive for
charges of like sign; they have to be pushed together. With ¢, and ¢,
in esu, and r, in cm, Eq. 3 gives the work in ergs.

tL. Davis, Jr., A. S. Goldhaber, M. M. Nieto, Phys. Rev. Lett. 35:1402 (1975). For FIGURE 1.4
a review of the history of the exploration of the outer limit of classical electromagne- Three charges are brought near one another. First g; is
tism, see A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43:277 (1971). brought in; then with gy and g fixed, gs is brought in.
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FIGURE 1.5

Because the force is central, the sections of different
paths between r + dr and r require the same amount
of work.

This work is the same whatever the path of approach. Let’s
review the argument as it applies to the two charges g; and ¢, in Fig.
1.5. There we have kept g, fixed, and we show g, moved to the same
final position along two different paths. Every spherical shell such as
the one indicated between r and r + dr must be crossed by both patfls.
The increment of work involved, —F - ds in this bit of path, is the
same for the two paths.t The reason is that F has the same magnitude
at both places and is directed radially from g;, while ds = dr/cos 6;
hence F - ds = F dr. Each increment of work along one path is
matched by a corresponding increment on the other, so the sums must
be equal. Our conclusion holds even for paths that loop in and out, like
the dotted path in Fig. 1.5. (Why?)

Returning now to the two charges as we left them in Fig. 1.45,
let us bring in from some remote place a third charge g; and move it
to a point P; whose distance from charge 1 is r3; cm, and from charge
2, r3; cm. The work required to effect this will be

P3

W3 = — F3 : dS ) (4)

oo

Thanks to the additivity of electrical interactions, which we have

“already emphasized,

—JF3‘dS —J(F31—|—F32)-ds
—JF31-dr~JF32-dr (5)

That is, the work required to bring g; to P; is the sum of the work
needed when g, is present alone and that needed when g, is present
alone.

_ 4143 + 9293 6)
73 I3

W
The total work done in assembling this arrangement of three charges,

which we shall call U, is therefore

_ 919 + 9193 + 9293
T2 ry3 r3

U

(7

We note that qi, g5, and g3 appear symmetrically in the expres-
sion above, in spite of the fact that g; was brought up last. We would
have reached the same result if g; had been brought in first. (Try it.)
Thus U is independent of the order in which the charges were assemni-

tHere we use for the first time the scalar product, or “dot product,” of two vectors. A
reminder: the scalar product of two vectors A and B, written A - B, is the number 4
B cos §. Aand B are the magnitudes of the vectors A and B, and 6 is the angle between
them. Expressed in terms of cartesian components of the two vectors, A - B = A,B,
+ A,B, + A4.B..
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bled. Since it is independent also of the route by which each charge

was brought in, U must be a unique property of the final arrangement —e

of charges. We may call it the electrical potential energy of this par- //Q‘ ~~~~~~~~ ¢
ticular system. There is a certain arbitrariness, as always, in the def- —e -7 } ///;Q
inition of a potential energy. In this case we have chosen the zero of Qf ““““ Tt

potential energy to correspond to the situation with the three charges i
already in existence but infinitely far apart from one another. The :
potential energy belongs to the configuration as a whole. There is no I
meaningful way of assigning a certain fraction of it to one of the |
charges. }

It is obvious how this very simple result can be generalized to _._Oi \\\\\\ {5//’ b
apply to any number of charges. If we have [V different charges, in ¢ b T
any arrangement in space, the potential energy of the system is cal-
culated by summing over all pairs, just as in Eq. 7. The zero of poten- (a)
tial energy, as in that case, corresponds to all charges far apart.

As an example, let us calculate the potential energy of an
arrangement of eight negative charges on the corners of a cube of side 12 such pairs
b, with a positive charge in the center of the cube, as in Fig. 1.6a. (y@
Suppose each negative charge is an electron with charge —e, while
the central particle carries a double positive charge, 2e. Summing over
all pairs, we have

O

8(—2¢é? 12¢*  12¢7 4 4.32¢° /
p= 820 Lz D | g _a3e g
(V3/2b b \2b  \/3b b
Figure 1.6b shows where each term in this sum comes from. The

12 such
. pairs

energy is positive, indicating that work had to be done on the system
to assemble it. That work could, of course, be recovered if we let the
charges move apart, exerting forces on some external body or bodies.
Or if the electrons were simply to fly apart from this configuration,
the total kinetic energy of all the particles would become equal to U.
This would be true whether they came apart simultaneously and sym-
metrically, or were released one at a time in any order. Here we see
the power of this simple notion of the total potential energy of the (2) The potontial energy of this arrangement of nine
system. Think what the problem woulq be like if we had to compute point charges is given by Eq. 9. (b) Four types of pairs
the resultant vector force on every particle at every stage of assembly  4re involved in the sum.
of the configuration! In this example, to be sure, the geometrical sym-
metry would simplify that task; even so, it would be more complicated
than the simple calculation above.

One way of writing the instruction for the sum over pairs is this:

4 such pairs 8 such pairs

(b)

FIGURE 1.6

= % Z Z 499k 9)

Jj=1 k+j T
The double-sum notation, 2 j:lzk;é » says: Take j = 1 and sum over
k=23,4,...,N;thentake j = 2and sumover k = 1,3,4,...,
N; and so on, through j = V. Clearly this includes every pair twice,
and to correct for that we put in front the factor %.
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FIGURE 1.7

A portion of a sodium chloride crystal, with the ions
Na™ and C1~ shown in about the right relative
proportions (a), and replaced by equivalent point
charges (b).

ELECTRICAL ENERGY IN A CRYSTAL LATTICE

1.6 These ideas have an important application in the physics of
crystals. We know that an ionic crystal like sodium chloride can be
described, to a very good approximation, as an arrangement of positive
ions (Na*) and negative ions (Cl7) alternating in a regular three’

“dimensional array or lattice. In sodium chloride the arrangement is

that shown in Fig. 1.7a. Of course the ions are not point charges, but
they are nearly spherical distributions of charge and therefore (as we
shall presently prove) the electrical forces they exert on one another
are the same as if each ion were replaced by an equivalent point
charge at its center. We show this electrically equivalent system in
Fig. 1.7b. The electrostatic potential energy of the lattice of charges
plays an important role in the explanation of the stability and cohesion
of the ionic crystal. Let us see if we can estirhate its magnitude.

We seem to be faced at once with a sum that is enormous, if not
doubly infinite, for any macroscopic crystal contains 10%° atoms at
least. Will the sum converge? Now what we hope to find is the poten-
tial energy per unit volume or mass of crystal. We confidently expect
this to be independent of the size of the crystal, based on the general
argument that one end of a macroscopic crystal can have little influ-
ence on the other. Two grams of sodium chloride ought to have twice
the potential energy of 1 gm, and the shape should not be important
so long as the surface atoms are a small fraction of the total number
of atoms. We would be wrong in this expectation if the crystal were
made out of ions of one sign only. Then, 1 gm of crystal would carry
an enormous electric charge, and putting two such crystals together
to make a 2-gm crystal would take a fantastic amount of energy. (You
might estimate how much!) The situation is saved by the fact that the
crystal structure is an alternation of equal and opposite charges, so
that any macroscopic bit of crystal is very nearly neutral.

To evaluate the potential energy we first observe that every pos-
itive ion is in a position equivalent to that of every other positive ion.
Furthermore, although it is perhaps not immediately obvious from
Fig. 1.7, the arrangement of positive ions around a negative ion is
exactly the same as the arrangement of negative ions around a positive
ion, and so on. Hence we may take one ion as a center, it matters not
which kind, sum over its interactions with all the others, and simply
multiply by the total number of ions of both kinds. This reduces the
double sum in Eq. 9, to a single sum and a factor IV; we must still
apply the factor % to compensate for including each pair twice. That
is, the energy of a sodium chloride lattice composed of a total of N
ions is

1 N
U=-N ik (10)
23
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Taking the positive ion at the center as in Fig. 1.7b, our sum runs over
all its neighbors near and far. The leading terms start out as follows:
1 ( 6e>  12¢%  8é? )

=-N
v=3

+._..___—_+...
a V2a \3a

The first term comes from the 6 nearest chlorine ions, at distance a,
the second from the 12 sodium ions on the cube edges, and so on. It
is clear, incidentally, that this series does not converge absolutely, if
we were so foolish as to try to sum all the positive terms first, that sum
would diverge. To evaluate such a sum, we should arrange it so that
as we proceed outward, including ever more distant ions, we include
them in groups which represent nearly neutral shells of material. Then
if the sum is broken off, the more remote ions which have been
neglected will be such an even mixture of positive and negative
charges that we can be confident their contribution would have been
small. This is a crude way to describe what is actually a somewhat
more delicate computational problem. The numerical evaluation of
such a series is easily accomplished with a computer. The answer in
this example happens to be

(11)

—0.8738 Ne?
Us—(

(12)

Here N, the number of ions, is twice the number of NaCl molecules.

The negative sign shows that work would have to be dorne to take
the crystal apart into ions. In other words, the electrical energy helps
to explain the cohesion of the crystal. If this were the whole story,
however, the crystal would collapse, for the potential energy of the
charge distribution is obviously lowered by shrinking all the distances.
We meet here again the familiar dilemma of classical—that is, non-
quantum—physics. No system of stationary particles can be in stable
equilibrium, according to classical laws, under the action of electrical
forces alone. Does this make our.analysis useless? Not at all. Remark-
ably, and happily, in the quantum physics of crystals the electrical
potential energy can still be given meaning, and can be computed very
much in the way we have learned here.

THE ELECTRIC FIELD

1.7 Suppose we have some arrangement of charges, qi, ¢, . . . , qn,
fixed in space, and we are interested not in the forces they exert on
one another but only in their effect on some other charge g, which
might be brought into their vicinity. We know how to calculate the
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FIGURE 1.8
The field at a point is the vector.sum of the fields of
each of the charges in the system.

resultant force on this charge, given its position which we may specify
by the coordinates x, y, z. The force on the charge ¢, is

F, = Z 40%1'01 (13)}

J=1 rOJ

where rg; is the vector from the jth charge in the system to the point
(x, , z). The force is proportional to go, so if we divide out g, we
obtain a vector quantity which depends only on the structure of our
original system of charges, ¢, . . ., gy, and on the position of the point
(x, y, z). We call this vector function of x, y, z the electric field aris-
ing from the gy, ..., gy and use the symbol E for it. The charges
q1, - - - » gy we call sources of the field. We may take as the definition
of the electric field E of a charge distribution, at the point (x, y, z)

N a
E(x,y,2) = 3 5¥ (14)
j= Jj

Figure 1.8 illustrates the vector addition of the field of a point charge
of 2 esu to the field of a point charge of —1 esu, at a particular point
in space. In the CGS system of units, electric field strength is
expressed in dynes per unit charge, that is, dynes/esu.

In ST units with the coulomb as the unit of charge and the new-
ton as the unit of force, the electric field strength E can be expressed
in newtons/coulomb, and Eq. 14 would be written like this:

1 & q;%o;
E=—) 4 (14
47reoj=z1 ro;

each distance r(; being measured in meters.

After the introduction of the electric potential in the next chap-
ter, we shall have another, and completely equivalent, way of express-
ing the unit of electric field strength; namely, statvolts/cm in the CGS
system of units and volts/meter in SI units.

So far we have nothing really new. The electric field is merely
another way of describing the system of charges; it does so by giving
the force per unit charge, in magnitude and direction, that an explor-
ing charge g, would experience at any point. We have to be a little
careful with that interpretation. Unless the source charges are really
immovable, the introduction of some finite charge g, may cause the
source charges to shift their positions, so that the field itself, as defined
by Eq. 14, is different. That is why we assumed fixed charges to begin
our discussion. People sometimes define the field by requiring g, to be

n “infinitesimal” test charge, letting E be the limit of F/g, as go —
0. Any flavor of rigor this may impart is illusory. Remember that in
the real world we have never observed a charge smaller than e!
Actually, if we take Eq. 14 as our definition of E, without reference
to a test charge, no problem arises and the sources need not be fixed.

;,
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If the introduction of a new charge causes a shift in the source
charges, then it has indeed brought about a change in the electric field,
and if we want to predict the force on the new charge, we must use
the new electric field in computing it.

Perhaps you still want to ask, what is an electric field? Is it
something real, or is it merely a name for a factor in an equation
which has to be multiplied by something else to give the numerical
value of the force we measure in an experiment? Two observations
may be useful here. First, since it works, it doesn’t make any differ-
ence. That is not a frivolous answer, but a serious one. Second, the
fact that the electric field vector at a point in space is all we need know
to predict the force that will act on any charge at that point is by no
means trivial. It might have been otherwise! If no experiments had
ever been done, we could imagine that, in two different situations in
which unit charges experience equal force, test charges of strength 2
units might experience different forces, depending on the nature of the
other charges in the system. If that were true, the field description
wouldn’t work. The electric field attaches to every point in a system a
local property, in this sense: If we know E in some small neighbor-
hood, we know, without further inquiry, what will happen to any
charges in that neighborhood. We don’t need to ask what produced
the field.

To visualize an electric field, you need to associate a vector, that
is, a magnitude and direction, with every point in space. We shall use
various schemes, none of them wholly satisfactory, to depict vector
fields in this book.

It is hard to draw in two dimensions a picture of a vector func-

FIGURE 1.9

(a) Field of a charge g, = 8. (b) Field of a charge g
= —1. Both representations are necessarily crude and
only roughly quantitative.

® Charge + 3
o Charge — 1 (b)
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0 Charge — 1

FIGURE 1.10

The field in the vicinity of two charges, q; = + 3, @»
= —1, is the superposition of the fields in Fig. 1.9a
and b.

iE =0 here

tion in three-dimensional space. We can indicate the magnitude and
direction of E at various points by drawing little arrows near those
points, making the arrows longer where E is larger.T Using this
scheme, we show in Fig. 1.9a the field of an isolated point charge of
3 units and in Fig. 1.9b the field of a point charge of —1 unit. These
pictures admittedly add nothing whatever to our understanding of the
field of an isolated charge; anyone can imagine a simple radial inverse-
square field without the help of a picture. We show them in order to
combine the two fields in Fig. 1.10, which indicates in the same man-
ner the field of two such charges separated by a distance a. All that
Fig. 1.10 can show is the field in a plane containing the charges. To
get a full three-dimensional representation one must imagine the fig-

TSuch a representation is rather clumsy at best. It is hard to indicate the point in space
to which a particular vector applies, and the range of magnitudes of E is usually so
large that it is impracticable to make the lengths of the arrows proportional to E.

-
-
\
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ure rotated around the symmetry axis. In Fig. 1.10 there is one point
in space where E is zero. How far from the nearest charge must this
point lie? Notice also that toward the edge of the picture the field
points more or less radially outward all around. One can see that at a
very large distance from the charges the field will look very much like
the field from a positive point charge. This is to be expected because
the separation of the charges cannot make very much difference for
points far away, and a point charge of 2 units is just what we would
have left if we superimposed our two sources at one spot.

Another way to depict a vector field is to draw field lines. These
are simply curves whose tangent, at any point, lies in the direction of
the field at that point. Such curves will be smooth and continuous

FIGURE 1.11
Some field lines in the electric field around two
+ 3, Qx = —1.



20

CHAPTER ONE

FIGURE 1.12

Each element of the charge distribution p(x’, y’, Z’)
makes a contribution to the electric field E at this point
(x, v, 2). The total field at this point is the sum of all
such contributions (Eq. 15).

p(xy.%)

(27 1)

(x,y,2)

except at singularities such as point charges, or points like the one in
the example of Fig. 1.10 where the field is zero. A field line plot does
not directly give the magnitude of the field, although we shall see that,
in a general way, the field lines converge as we approach a region of
strong field and spread apart as we approach a region of weak field.
In Fig. 1.11 are drawn some field lines for the same arrangement of
charges as in Fig. 1.10, a positive charge of 3 units and a negative
charge of 1 unit. Again, we are restricted by the nature of paper and
ink to a two-dimensional section through a three-dimensional bundle
of curves.

CHARGE DISTRIBUTIONS

1.8 This is as good a place as any to generalize from point charges
to continuous charge distributions. A volume distribution of charge is
described by a scalar charge-density function p, which is a function of
position, with the dimensions charge/volume. That is, p times a volume
element gives the amount of charge contained in that volume element.
The same symbol is often used for mass per unit volume, but in this
book we shall always give charge per unit volume first call on the sym-
bol p. If we write p as a function of the coordinates x, y, z, then p(x,
y, z) dx dy dz is the charge contained in the little box, of volume dx
dy dz, located at the point (x, y, z).

On an atomic scale, of course, the charge density varies enor-
mously from point to point; even so, it proves to be a useful concept in
that domain. However, we shall use it mainly when we are dealing
with large-scale systems, so large that a volume element dv = dx dy
dz can be quite small relative to the size of our system, although still
large enough to contain many atoms or elementary charges. As we
have remarked before, we face a similar problem in defining the ordi-
nary mass density of a substance.

If the source of the electric field is to be a continuous charge
distribution rather than point charges, we merely replace the sum in
Eq. 14 with the appropriate integral. The integral gives the electric field
at (x, y, z), which is produced by charges at other points (x/, y’, z').

/ / AN~ / / /7
E(x, y. 2) = jp(x,y,z)rzdx dy’ dz (15)

7

This is a volume integral. Holding (x, y, z) fixed we let the variables
of integration, x’, y’, and z’, range over all space containing charge,
thus summing up the contributions of all the bits of charge. The unit
vector £ points from (x/, y/, ') to (x, y, z)—unless we want to put a
minus sign before the integral, in which case we may reverse the direc-
tion of £. It is always hard to keep signs straight. Let’s remember that
the electric field points away from a positive source (Fig. 1.12).

In the neighborhood of a true point charge the electric field

o




ELECTROSTATICS: CHARGES AND FIELDS

21

grows infinite like 1/ r* as we approach the point. It makes no sense to
talk about the field ar the point charge. As our ultimate physical
sources of field are not, we believe, infinite concentrations of charge in
zero volume but instead finite structures, we simply ignore the math-
ematical singularities implied by our point-charge language and rule
out of bounds the interior of our elementary sources. A continuous
charge distribution p (x’, y’, z’) which is nowhere infinite gives no trou-
ble at all. Equation 15 can be used to find the field at any point within
the distribution. The integrand doesn’t blow up at » = 0 because the
volume element in the numerator is in that limit proportional to 7* dr.
That is to say, so long as p remains finite, the field will remain finite
everywhere, even in the interior or on the boundary of a charge
distribution.

FLUX

1.9 The relation between the electric field and its sources can be
expressed in a remarkably simple way, one that we shall find very use-
ful. For this we need to define a quantity called flux.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.13 shows
such a surface, the field being suggested by a few field lines. Now
divide the whole surface into little patches which are so small that over
any one patch the surface is practically flat and the vector field does
not change appreciably from one part of a patch to another. In other
words, don’t let the balloon be too crinkly, and don’t let its surface
pass right through a singularityt of the field such as a point charge.
The area of a patch has a certain magnitude in cm? and a patch
defines a unique direction—the outward-pointing normal to its sur-
face. (Since the surface is closed, you can tell its inside from its out-
side; there is no ambiguity.) Let this magnitude and direction be rep-
resented by a vector. Then for every patch into which the surface has
been divided, such as patch number j, we have a vector a; giving its
area and orientation. The steps we have just taken are pictured in Fig.
1.13b and c. Note that the vector a; does not depend at all on the shape
of the patch; it doesn’t matter how we have divided up the surface, as
long as the patches are small enough.

Let E,; be the electric field vector at the location of patch number
j. The scalar product E; - a; is a number. We call this number the
flux through that bit of surface. To understand the origin of the name,

By a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but any place where the field changes magnitude or direc-
tion discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some finite
area.

FIGURE 1.13

(a) A closed surface in a vector field is divided (b) into
small elements of area. (¢) Each element of area is
represented by an outward vector.






