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The flux through the frame of area ais v - a, where y
is the velocity of the fluid. The flux is the volume of fluid
passing through the frame, per unit time.

imagine a vector function which represents the velocity of motion in a
fluid—say in a river, where the velocity varies from one place to
another but is constant in time at any one position. Denote this vector
field by v, measured, say, in meters/sec. Then, if a is the oriented area
in square meters of a frame lowered into the water, v - a is the rate
of flow of water through the frame in cubic meters per second (Fig.
1.14). We must emphasize that our definition of flux is applicable to
any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the
flux through the entire surface, a scalar quantity which we shall
denote by &:

=) FE - a (16)
Al j

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. 16 to a surface integral:

P = J.Entire E - da (17)

surface

A surface integral of any vector function F, over a surface S, means
Jjust this: Divide S into small patches, each represented by a vector
outward, of magnitude equal to the patch area; at every patch, take
the scalar product of the patch area vector and the local F; sum all
these products, and the limit of this sum, as the patches shrink, is the
surface integral. Do not be alarmed by the prospect of having to per-
form such a calculation for an awkwardly shaped surface like the one
in Fig. 1.13. The surprising property we are about to demonstrate
makes that unnecessary!

GAUSS'S LAW
1.10 Take the simplest case imaginable; suppose the field is that of
a single isolated positive point charge ¢ and the surface is a sphere of
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radius r centered on the point charge (Fig. 1.15). What is the flux ¢
through this surface? The answer is easy because the magnitude of E
at every point on the surface is g/#* and its direction is the same as
that of the outward normal at that point. So we have

® = E X total area = % X 4xr? = 47q (18)
¥

The flux is independent of the size of the sphere.

Now imagine a second surface, or balloon, enclosing the first,
but not spherical, as in Fig. 1.16. We claim that the total flux through
this surface is the same as that through the sphere. To see this, look
at a cone, radiating from ¢, which cuts a small patch a out of the
sphere and continues on to the outer surface where it cuts out a patch
A at a distance R from the point charge. The area of the patch A is
larger than that of the patch a by two factors: first, by the ratio of the
distance squared (R/ r)% and second, owing to its inclination, by the
factor 1/cos 6. The angle § is the angle between the outward normal
and the radial direction (see Fig. 1.16). The electric field in that neigh-
borhood is reduced from its magnitude on the sphere by the factor
(r/R)* and is still radially directed. Letting E, be the field at the
outer patch and E, be the field at the sphere, we have

Flux through outer patch = Ez) - A = Egyd cos @ (19)
Flux through inner patch = E,y - a = E(ya

2 2
R) 1
EgAcost = {E(,) <§> }[a <7> cosﬁ} cos § = Epa

This proves that the flux through the two patches is the same.

Now every patch on the outer surface can in this way be put into
correspondence with part of the spherical surface, so the total flux
must be the same through the two surfaces. That is, the flux through
the new surface must be just 4wq. But this was a surface of arbitrary
shape and size.T We conclude: The flux of the electric field through
any surface enclosing a point charge g is 4wq. As a corollary we can
say that the total flux through a closed surface is zero if the charge
lies outside the surface. We leave the proof of this to the reader, along
with Fig. 1.17 as a hint of one possible line of argument.

There is a way of looking at all this which makes the result seem
obvious. Imagine at g a source which emits particles—such as bullets
or photons—in all directions at a steady rate. Clearly the flux of par-
ticles through a window of unit area will fall off with the inverse
square of the window’s distance from g. Hence we can draw an anal-
ogy between the electric field strength £ and the intensity of particle

+To be sure, we had the second surface enclosing the sphere, but it didn’t have to,
really. Besides, the sphere can be taken as small as we please.

FIGURE 1.15
In the field E of a point charge g, what is the outward
flux over a sphere surrounding g?

FIGURE 1.16
Showing that the flux through any closed surface
ground g is the same as the flux through the sphere.
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(b)

FIGURE 1.17
To show that the flux through the closed surface in (a)
is zero, you can make use of (b).

flow in bullets per unit area per unit time. It is pretty obvious that the
flux of bullets through any surface completely surrouding ¢ is inde-
pendent of the size and shape of that surface, for it is just the total
number emitted per unit time. Correspondingly, the flux of E through
the closed surface must be independent of size and shape. The com-
mon feature responsible for this is the inverse-square behavior of the
intensity.

The situation is now ripe for superposition! Any electric field is
the sum of the fields of its individual sources. This property was
expressed in our statement, Eq. 13, of Coulomb’s law. Clearly flux is
an additive quantity in the same sense, for if we have a number of
SOUICes, ¢, gz, - - - , 4, the fields of which, if each were present alone,
would be Ey, E,. .., Ey, the flux & through some surface S in the
actual field can be written

<I>=JE-da=f(E1+E2+---+EN)-da (20)
s s :

We have just learned that J E, - da equals 4, if the charge
s

gy is inside S and equals zero otherwise. So every charge ¢ inside the
surface contributes exactly 4wg to the surface integral of Eq. 20 and
all charges outside contribute nothing. We have arrived at Gauss’s
law:

The flux of the electric field E through any closed

surface, that is, the integral jE - da over the sur-

face, equals 4= times the total charge enclosed by
the surface:

21)

jE-da=47qu,~=47rjpdv

We call the statement in the box a law because it is equivalent
to Coulomb’s law and it could serve equally well as the basic law of
electrostatic interactions, after charge and field have been defined.
Gauss’s law and Coulomb’s law are not two independent physical laws,
but the same law expressed in different ways. T

fThere is one difference, inconsequential here, but relevant to our later study of the
fields of moving charges. Gauss’ law is obeyed by a wider class of fields than those
represented by the electrostatic field. In particular, a field that is inverse-square in r
but not spherically symmetrical can satisfy Gauss’ law. In other words, Gauss’ law
alone does not imply the symmetry of the field of a point source which is implicit in
Coulomb’s law.
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Looking back over our proof, we see that it hinged on the
inverse-square nature of the interaction and of course on the additivity
of interactions, or superposition. Thus the theorem is applicable to any
inverse-square field in physics, for instance, to the gravitational field.

It is easy to see that Gauss’s law would not hold if the law of
force were, say, inverse-cube. For in that case the flux of electric field
from a point charge g through a sphere of radius R centered on-the
charge would be

4
@:JE-da=ﬁ—-4wR2=Lq (22)

R3 R
By making the sphere large enough we could make the flux through
it as small as we pleased, while the total charge inside remained
constant.

This remarkable theorem enlarges our grasp in two ways. First,
it reveals a connection between the field and its sources that is the
converse of Coulomb’s law. Coulomb’s law tells us how to derive the
electric field if the charges are given; with Gauss’s law we can deter-
mine how much charge is in any region if the field is known. Second,
the mathematical relation here demonstrated is a powerful analytic
tool; it-can make complicated problems easy, as we shall see.

FIELD OF A SPHERICAL CHARGE DISTRIBUTION

4.11 We can use Gauss’s law to find the electric field of a spheri-
cally symmetrical distribution of charge, that is, a distribution in
which the charge density p depends only on the radius from a central
point. Figure 1.18 depicts a cross section through some such distri-
bution. Here the charge density is high at the center, and is zero
beyond ry. What is the electric field at some point such as P outside
the distribution, or P, inside it (Fig. 1.19)? If we could proceed only
from Coulomb’s law, we should have to carry out an integration which
would sum the electric field vectors at P; arising from each elementary
volume in the charge distribution. Let’s try a different approach which
exploits both the symmetry of the system and Gauss’s law.

Because of the spherical symmetry, the electric field at any point
must be radially directed—no other direction is unique. Likewise, the
field magnitude £ must be the same at all points on a spherical surface
S, of radius r;, for all such points are equivalent. Call this field mag-
nitude E;. The flux through this surface S| is therefore simply 4= riE;,
and by Gauss’s law this must be equal to 4« times the charge enclosed
by the surface. That is, 47riE; = 4 (charge inside S)) or

E = charge inside S (23)

rt

FIGURE 1.18

A charge distribution with spherical symmetry.

FIGURE 1.19

The electric field of a spherical charge distribution.
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inside

FIGURE 1.20

The field is zero inside a spherical shell of charge.

Comparing this with the field of a point charge, we see that the
field at all points on S| is the same as if all the charge within S, were
concentrated at the center. The same statement applies to a sphere
drawn inside the charge distribution. The field at any point on .S, 1s
the same as if all charge within S, were at the center, and all charge
outside S, absent. Evidently the field inside a “hollow” spherical
charge distribution is zero (Fig. 1.20).

The same argument applied to the gravitational field would tell
us that the earth, assuming it is spherically symmetrical in its mass
distribution, attracts outside bodies as if its mass were concentrated
at the center. That is a rather familiar statement. Anyone who is
inclined to think the principle expresses an obvious property of the
center of mass must be reminded that the theorem is not even true, in
general, for other shapes. A perfect cube of uniform density does not
attract external bodies as if its mass were concentrated at its geomet-
rical center.

Newton didn’t consider the theorem obvious. He needed it as the
keystone of his demonstration that the moon in its orbit around the
earth and a falling body on the earth are responding to similar forces.
The delay of nearly 20 years in the publication of Newton’s theory of
gravitation was apparently due, in part at least, to the trouble he had
in proving this theorem to his satisfaction. The proof he eventually
devised and published in the Principia in 1686 (Book I, Section XII,
Theorem XXXI) is a marvel of ingenuity in which, roughly speaking,
a tricky volume integration is effected without the aid of the integral
calculus as we know it. The proof is a good bit longer than our whole
preceding discussion of Gauss’s law, and more intricately reasoned.
You see, with all his mathematical resourcefulness and originality,
Newton lacked Gauss’s theorem—a relation which, once it has been
shown to us, seems so obvious as to be almost trivial.

FIELD OF A LINE CHARGE

.12 A long, straight, charged wire, if we neglect its thickness, can
be characterized by the amount of charge it carries per unit length.
Let A, measured in esu/cm, denote this linear charge density. What is
the electric field of such a line charge, assumed infinitely long and with
constant linear charge density A? We’ll do the problem in two ways,
first by an integration starting from Coulomb’s law.

To evaluate the field at the point P, shown in Fig. 1.21, we must
add up the contributions from all segments of the line charge, one of
which is indicated as a segment of length dx. The charge dg on this
element is given by dg = A dx. Having oriented our x axis along the
line charge, we:may as well let the y axis pass through P, which is
cm from the nearest point on the line. It is a good idea to take advan-
tage of symmetry at the outset. Obviously the electric field at P must
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point in the y direction, so that E, and E, are both zero. The contri-
bution of the charge dg to the y component of the electric field at P
is

\d
dE, = — cosf = sz cos (24)

where 6 is the angle the vector field of dg makes with the y direction.
The total y component is then

“ Acosd
Ey:jdEy: cw R

It is convenient to use 6 as the variable of integration. Since R =
r/cos § and dx = R df/cos 0, the integral becomes

dx (25)

y

/2 w/2 :
E —J 4—>\C080d0=5 / cos@d0=% (26)

—x/2 r g - F
We see that the field of an infinitely long, uniformly dense line charge
is proportional to the reciprocal of the distance from the line. Its direc-
tion is of course radially outward if the line carries a positive charge,
inward if negative. ‘

Gauss’ law leads directly to the same result. Surround a segment

FIGURE 1.21
(a) The field at P is the vector sum of contributions
from each element of the line charge. (b) Detail of (a).
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FIGURE 1.22

Using Gauss’ law to find the field of a line charge.

of the line charge with a closed circular cylinder of length L and radius
r, as in Fig. 1.22, and consider the flux through this surface. As we
have already noted, symmetry guarantees that the field is radial, so
the flux through the ends of the “tin can” is zero. The flux through
the cylindrical surface is simply the area, 2wrL, times E,, the field at
the surface. On the other hand, the charge enclosed by the surface is
just AL, so Gauss’s law gives us 2nrLE, = 4wx\L or

_2

r

E, @7

in agreement with Eq. 26.

FIELD OF AN INFINITE FLAT SHEET OF CHARGE

1.13 Electric charge distributed smoothly in a thin sheet is called
a surface charge distribution. Consider a flat sheet infinite in extent,
with the constant surface charge density o. The electric field on either
side of the sheet, whatever its magnitude may turn out to be, must
surely point perpendicular to the plane of the sheet; there is no other
unique direction in the system. Also because of symmetry, the field
must have the same magnitude and the opposite” direction at two
points P and P’ equidistant from the sheet on opposite sides. With
these facts established, Gauss’s law gives us at once the field intensity,
as follows: Draw a cylinder, as in Fig. 1.23, with P on one side and P’
on the other, of cross-section area 4. The outward flux is found only
at the ends, so that if £, denotes the magnitude of the field at P, and
Ep. the magnitude of P, the outward flux is AE, + AEp = 2AEp.
The charge enclosed is 4. Hence 24Ep = 4noA, or

Ep = 2no (28)

We see that the field strerigth is independent of 7, the distance from
the sheet. Equation 28 could have been derived more laboriously by
calculating the vector sum of the contributions to the field at P from
all the little elements of charge in the sheet.

The fieid of an infinitely long line charge, we found, varies
inversely as the distance from the line, while the field of an infinite
sheet has the same strength at all distances. These are simple conse-
quences of the fact that the field of a point charge varies as the inverse
square of the distance. If that doesn’t yet seem compellingly obvious,
look at it this way: Roughly speaking, the part of the line charge that
is mainly responsible for the field at P, in Fig. 1.21, is the near part—
the charge within a distance of order of magnitude ». If we lump all
this together and forget the rest, we have a concentrated charge of
magnitude ¢ = Ar, which ought to produce a field proportional to
q/r*, or A/r. In the case of the sheet, the amount of charge that is
“effective,” in this sense, increases proportionally to #* as we go out
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from the sheet, which just offsets the 1 /r2 decrease in the field from
any given element of charge.

THE FORCE ON A LAYER OF CHARGE

1.14 The sphere in Fig. 1.24 has a charge distributed over its sur-
face with the uniform density o, in esu/cm? Inside the sphere, as we
have already learned, the electric field of such a charge distribution is
zero. Outside the sphere the field is Q/r?, where Q is the total charge
on the sphere, equal to 4wr§o. Just outside the surface of the sphere
the field strength is 4we. Compare this with Eq. 28 and Fig. 1.23. In
both cases Gauss’ law is obeyed: The change in E, from one side of
the layer to the other, is equal to 4mo.

What is the electrical force experienced by the charges that
make up this distribution? The question may seem puzzling at first
because the field E arises from these very charges. What we must
think about is the force on some small element of charge dg, such as
a small patch of area dA4 with charge dg = o dA. Consider, sepa-
rately, the force on dg due to all the other charges in the distribution,

FIGURE 1.23
Using Gauss' law to find the field of an infinite flat sheet
of charge.

FIGURE 1.24
A spherical surface with uniform charge density o.
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FIGURE 1.25
The net change in field at a charge layer depends only
on the total charge per unit area.

and the force on the patch due to the charges within the patch itself.
This latter force is surely zero. Coulomb repulsion between charges
within the patch is just another example of Newton’s third law; the
patch as a whole cannot push on itself. That simplifies our problem,
for it allows us to use the entire electric field E, including the field due
to all charges in the patch, in calculating the force dF on the patch of
charge dg:

dF = Edg = EodA (29)

But what E shall we use, the field £ = 4wo outside the sphere or the
field £ = 0 inside? The correct answer, as we shall prove in a moment,
is the average of the two fields.

dF = %(4wo + 0) 6 dA =276 dA (30)

To justify this we shall consider a more general case, and one
that will introduce a more realistic picture of a layer of surface charge.
Real charge layers do not have zero thickness. Figure 1.25 shows some
ways in which charge might be distributed through the thickness of a
layer. In each example the value of o, the total charge per unit area
of layer, is the same. These might be cross sections through a small
portion of the spherical surface in Fig. 1.24 on a scale such that the
curvature is not noticeable. To make it more general, however, we
have let the field on the left be E (rather than 0, as it was inside the
sphere), with E; the field strength on the right. The condition imposed
by Gauss’s law, for given o, is in each case

E, — E, = 4no (31)

Now let us look carefully within the layer where the field is
changing continuously from E; to E, and there is a volume charge
density p(x) extending from x = 0 to x = x,, the thickness of the
layer (Fig. 1.26). Consider a much thinner slab, of thickness dx < x,
which contains per unit area an amount of charge p dx. The force on
it is ‘

dF = Ep dx (32)

Thus the total force per unit area of our charge layer is
Xo
F = f Ep dx (33)
0

But Gauss’s law tells us that dFE, the change in E through the thin
slab, is just 4xp dx. Hence p dx in Eq. 33 can be replaced by dE /4w,
and the integral becomes

£

F S EdE = 1 (E: — E) (34)
87

471' E1
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Since E, — E; = 4xo, the result in Eq. 34, after being factored, can
be expressed as

F = WE, + E)o (35)

We have shown, as promised, that for given ¢ the force per unit area
on a charge layer is determined by the mean of the external field on
one side and that on the other.t This is independent of the thickness
of the layer, as long as it is small compared to the total area, and of
the variation p(x) in charge density within the layer.

The direction of the electrical force on an element of the charge
on the sphere is, of course, outward whether the surface charge is pos-
itive or negative. If the charges do not fly off the sphere, that outward
force must be balanced by some inward force. zui included in our
equations, which can hold the charge carriers in place. To call such a
force “nonelectrical” would be misleading, for electrical attractions
and repulsions are the dominant forces in the structure of atoms and
in the cohesion of matter generally. The difference is that these forces
are effective only at short distances, from atom to atom, or from elec-
tron to electron. Physics on that scale is a story of individual particles.
Think of a charged rubber balloon, say, 10 ¢m in radius, with 20 esu
of negative charge spread as uniformly as possible on its outer surface.
It forms a surface charge of density ¢ = 20/4007 = 0.016 esu/cm?”
The resulting outward force, per cm? of surface charge, is
2ma?, or 0.0016 dynes/cm? In fact our charge consists of about 4 X
10 electrons attached to the rubber film. As there are about 30 mil-
lion extra electrons per cm?, “graininess” in the charge distribution is
hardly apparent. However, if we could look at one of these extra elec-
trons, we would find it roughly 10~* cm—an enormous distance on an
atomic scale—from its nearest neighbor. This electron would be stuck,
electrically stuck, to a local molecule of rubber. The rubber molecule
would be attached to adjacent rubber molecules, and so on. If you pull
on the electron, the force is transmitted in this way to the whole piece
of rubber. Unless, of course, you pull hard enough to tear the electron
loose from the molecule to which it is attached. That would take an
electric field many thousands of times stronger than the field in our
example.

ENERGY ASSOCIATED WITH THE ELECTRIC FIELD

1.15 Suppose our spherical shell of charge is compressed slightly,
from an initial radius of ry to a smaller radius, as in Fig. 1.27. This
requires that work be done against the repulsive force, 2wa? dynes for

+Note that this is not necessarily the same as the average field within the layer, a
quantity of no special interest or significance.

FIGURE 1.26
Within the charge layer of density p(x), E{x + dx) —
E(x) = 4mp dx.

FIGURE 1.27
Shrinking a spherical shell or charged balloon.
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each square centimeter of surface. The displacement being dr, the
total work done is (47 r§)(2wa® ) dr, or 8x*rj¢* dr. This represents an
increase in the energy required to assemble the system of charges, the
energy U we talked about in Section 1.5:

dU = 8x*r§e* dr (36)

Notice how the electric field £ has been changed. Within the shell of
thickness dr the field was zero and is now 4w, Beyond r, the field is
unchanged. In effect we have created a field of strength £ = 4wo
filling a region of volume 4773 dr. We have done so by investing an
amount of energy given by Eq. 36 which, if we substitute £/4x for
@, can be written like this: '

2

dU = £ dnrg dr (37)
&

This is an instance of a general theorem which we shall not prove
now: The potential energy U of a system of charges, which is the total
work required to assemble the system, can be calculated from the elec-
tric field itself simply by assigning an amount of energy (E*/8w) dv
to every volume element dv and integrating over all space where there
is electric field.

1
U= — J E*dv (38)
Entire

8T
field

E?is a scalar quantity, of course: E*=E - E.

One may think of this energy as “stored” in the field. The system
being conservative, that amount of energy can of course be recovered
by allowing the charges to go apart; so it is nice to think of the energy
as “being somewhere” meanwhile. Our accounting comes out right if
we think of it as stored in space with a density of £?/8, in ergs/cm’.
There is no harm in this, but in fact we have no way of identifying,
quite independently of anything else, the energy stored in a particular
cubic centimeter of space. Only the total energy is physically measur-
able, that is, the work required to bring the charge into some config-
uration, starting from some other configuration. Just as the concept of
electric field serves in place of Coulomb’s law to explain the behavior
of electric charges, so when we use Eq. 38 rather than Eq. 9 to express
the total potential energy of an electrostatic system, we are merely
using a different kind of bookkeeping. Sometimes a change in view-
point, even if it is at first only a change in bookkeeping, can stimulate
new ideas and deeper understanding. The notion of the electric field
as an independent entity will take form when we study the dynamical
behavior of charged matter and electromagnetic radiation.
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We run into trouble if we try to apply Eq. 38 to a system that
contains a point charge, that is, a finite charge g of zero size. Locate
g at the origin of the coordinates. Close to the origin £* will approach
q*/r®. With dv = 4x7> dr, the integrand E* dv will behave like dr/
7%, and our integral will blow up at the limit » = 0. That simply tells
us that it would take infinite energy to pack finite charge into zero
volume—which is true but not helpful. In the real world we deal with
particles like electrons and protons. They are so small that for most
purposes we can ignore their dimensions and think of them as point
charges when we consider their electrical interaction with one another.
How much energy it took to make such a particle is a question that
goes beyond the range of classical electromagnetism. We have to
regard the particles as supplied to us ready-made. The energy we are
concerned with is the work done in moving them around.

The distinction is usually clear. Consider two charged particles,
a proton and a negative pion, for instance. Let E, be the electric field
of the proton, E. that of the pion. The total field is E = E, + E,,
and E - Eis £, + E2 4+ 2E, - E,. According to Eq. 38 the total
energy in the electric field of this two-particle system is
tem of elementary charged particles. Indeed, we want to omit them.

1
U —szdU
87 )

IJ 1 1
— | B2 d —j 2 d —f .
o Bd o [ Bat - B E

(39)

1l

The value of the first integral is a property of any isolated proton. It
is a constant of nature which is not changed by moving the proton
around. The same goes for the second integral, involving the pion’s
clectric field alone. It is-the third integral that directly concerns us,
for it expresses the energy required to assemble the system given a
proton and a pion as constituents.

The distinction could break down if the two particles interact so
strongly that the electrical structure of one is distorted by the presence
of the other. Knowing that both particles are in a sense composite (the
proton consisting of three quarks, the pion of two), we might expect
that to happen during a close approach. In fact, nothing much hap-
pens down to a distance of 107" cm. At shorter distances, for strongly
interacting particles like the proton and the pion, nonelectrical forces
dominate the scene anyway.

That explains why we do not need to include “self-energy” terms
like the first two integrals in Eq. 39 in our energy accounts for a sys-
tem of elementary charged particles. Indeed, we want to omit them.
We are doing just that, in effect, when we replace the actual distri-
bution of discrete elementary charges (the electrons on the rubber bal-
loon) by a perfectly continuous charge distribution.



