At the Crossroad of Physics and Machine Learning

Coordinators: Giuseppe Carleo, Kyle Cranmer, Rose Yu, and Lenka Zdeborova

The ongoing developments in machine learning are influencing physics research and offer the potential to open new routes to discovery. Simultaneously, concepts from physics are being used to better understand some of the machine learning methods and inspire new ones. This conference will gather researchers on the forefront of these developments to discuss existing key progress and promising new directions. We will highlight the use of machine learning in several areas of data-intensive physics including condensed matter, soft-matter, high-energy physics, cosmology, and astrophysics. We will also focus on the complementary developments in the application of physics concepts to the theory and practice of machine learning.