Physics 217B (Winter 2014)

Physics 217B, Field Theory in Condensed Matter Physics, Winter 2014


Prof. Matthew Fisher 

email: ;
Office: 1118 Kohn Hall
Lectures: Tuesday, Thursday 12:30-1:45 pm, BSIF 1217
Office Hours: Monday 2:00-3:00 pm, Wednesday 2:00-3:00 pm

Find the course web site thru my personal web site:


Grader/TA: Jim Garrison


Office: 6218 Broida Hall

Office Hours: Wed 10:30-11:30, Friday 10:30-11:30



Workload:  Homeworks, no exams 


SYLLABUS: (tentative)


I.) Quantum Mechanics of Many Bosons/Fermions: Basic Formalism

A.)  1st Quantization;  Many-particle wavefunctions, Feynman path-integrals

B.)  2nd Quantization; Field Operators for Bosons/Fermions

                  -       Application: Bosons in a box and BEC

C.)  Coherent State Path Integral for Bosons (brief)

D.) Femionic Oscillator:  Green’s functions, imaginary time, odd Matsubara freqs

                 -       Application: Many (free) Fermions in a Box, Fermi surface

E.)   Coherent State Path Integrals for Fermions

                 -       Grassmann numbers, calculus, and path integrals



 II.)      Interacting Fermions 


A.)  Diagrammatic Perturbation Theory (with coherent state path integrals)

B.)  Hartree-Fock Approximation

C.)   Electron Lifetime in a Fermi Liquid

D.)   Collective Modes

         -       Linear response theory

         -       Random Phase Approximation

         -       Zero sound in Fermi liquid

         -       Screening in a charged Fermi fluid


III.)        Fermions in One-dimension  


A.)   Non-interacting 1d fermions via Bosonization

B.)  Interacting fermions via Bosonization

C.)  Luttinger Liquid, and density/phase uncertaintly

D.)  Spinful fermions in 1d



Field theory books to look at (from oldest to newest)

“Quantum Many-Particle Systems” by Negele and Orland,

“Interacting Electrons and Quantum Magnetism” by A. Auerbach

 “Quantum Phase Transitions” by Subir Sachdev,

“Quantum field theory of Many-Body systems” by X. Wen

“Condensed Matter Field Theory” by A. Atland and B. Simons